

Aprobe:
A Non-Intrusive Framework
for Software Instrumentation

Oliver Cole
President and Founder
OC Systems, Inc.

Copyright © 2004 OC Systems, Inc. · All Rights Reserved

An Overview of Aprobe Technology

© 2004 OC Systems Inc. All rights reserved. 2 www.ocsystems.com

Table of Contents

Add instrumentation during development—or after3
Probe-based instrumentation does not get in the way.. 3
Write probes that are specific to your problem ... 4

How Aprobe works ..5
Writing your probes in C or Java... 5

Two sample probes... 6
Probes can do anything .. 6

Compiling and linking probes.. 7
Starting your application with Aprobe ... 8
Inserting probes into your application ... 8
Working with Java applications... 9
Reporting the logged data... 9
Calling Aprobe API directly ... 10

How to find out more...10

About OC Systems ..10

Case Studies appear on the following pages:

Tracking down an elusive memory leak ... 4
Improving performance .. 6
Performing remote debugging at user sites ... 7
Monitoring enterprise systems in real-time .. 8
Injecting faults to achieve comprehensive testing ... 9

An Overview of Aprobe Technology

© 2004 OC Systems Inc. All rights reserved. 3 www.ocsystems.com

Add instrumentation
during development—or after
“Software instrumentation” usually refers to the chunks of code that developers insert in an
application to record the values of function parameters, timing statistics, and the like. These
chunks of instrumentation code are not meant to be part of the finished application: their
purpose is to debug the application, to find bottlenecks, and to solve similar problems.

Experienced development teams systematically add instrumentation code to their application
while the application is being designed and written. Compile-time flags keep the
instrumentation code out of the finished executables and support libraries. Run-time flags turn
specific software instruments on and off.

Adding software instrumentation to an application late in its development cycle can be quite
disruptive to a project. Adding new source code expands the size of the machine-code
libraries, which can cause transient problems to temporarily “disappear”. You may need to
create a separate build for instrumentation to allow groups of developers and testers to
troubleshoot while other groups continue their normal work. If so, you then need to keep the
two builds synchronized.

And if you are trying to solve a problem in a production system at a customer site, you may
have the near-impossible task of duplicating the customer’s production environment.

Aprobe technology provides a cleaner approach to software instrumentation.

Probe-based instrumentation does not get in the way
Aprobe is a patented software instrumentation framework that lets you add instrumentation in
the form of “probes” to applications. The applications can be under development or deployed
in the field.

The source files of probes are not part of the application’s source files. The machine-language
version of probes reside in special-purpose libraries, not the application’s libraries. Aprobe
inserts calls to probes into your application at runtime, while the application is in memory.
The probes then execute as an integral part of the application.

You can access all parts of the application, including third-party code, shared libraries,
dynamic components, Java Virtual Machines, compilers, application servers, browsers, and so
on.

Aprobe-based software instrumentation does not disrupt development projects, or even
production systems running at your customer’s far-away site:

 You don’t need to change any of the application’s files stored on disk.

 You don’t need access to source or object code; Aprobe can work with the actual
delivered system software.

 You don’t need to recompile or rebuild the application.

 You don’t need to change how you start your application.

 You can enable or disable probes dynamically, in real time, as the application runs.

 You can log results to memory or memory-mapped disk, using Aprobe’s fast logging
routines (described later in this document). This means that your application will be
minimally slowed by the need to log results.

Aprobe is ideal for situations where your application is running in a production or production-
like test environment—especially if your application is interacting with third-party software
for which you do not have the source code.

An Overview of Aprobe Technology

© 2004 OC Systems Inc. All rights reserved. 4 www.ocsystems.com

Write probes that are specific to your problem
To use Aprobe, you need problem-specific probes written either in C or Java. You can write
your own probes, modify the ones supplied with Aprobe, or use those probes right out of the
box.

These probes must specify the data to be collected or define the changes to the program's
execution. If you are using C, the probes also specify where in the application these probes
will be inserted; if you are using Java, you specify the location using XML.

Aprobe compiles the probes into machine code (or, for Java, into byte code). These machine-
language probes are then inserted into the RAM image of the software the next time that it is
run.

Because probes are written in the full C or Java language, they can do anything that you can
do in C or Java. You could write an entire application using probes! But more likely, your
probes obtain and log crucial data about your application as it executes.

For example, you can obtain and log:

 Parameter values on entry to a function or method.

 Return values on exit.

 Values of any variables at any line (or offset) in the function.

 Data about objects, structures, queues, stacks, and other constructs.

 Data about memory allocation and de-allocation.

 Timing statistics of selected functions, methods, or transactions.

As well, the probes can alter the behavior of applications, for example by triggering
exceptions or error conditions.

Probes can even add completely new functionality, such as integrating your application with a
commercial, off the shelf product with no SDK.

OC Systems has created RootCause, Unicenter Universal Agent, and other products on top of
Aprobe. These software packages provide a problem-specific graphical user interface to
probes written with Aprobe.

Similarly, you can extend the power of your software—or create new products—by writing
probes specific to your problem, to monitor any aspect of your application’s execution, to
collect any data, and to perform virtually any task you need. Clever programmers can do some
amazing things by writing a few probes!

C A S E S T U D Y

Tracking down an elusive
memory leak
Project: NERC (New En Route Centre) is a
major new Air Traffic System for National Air
Traffic Services in Hampshire, England. NERC
provides en route air traffic control for all aircraft
in UK airspace: a system that demands the
utmost in reliability and response time.

Problem: NERC purchased a commercial X
server to support its workstations. But its
performance seemed sluggish. The X-server
vendor blamed the center’s in-house applications
for poor code. Caught in a classic finger-pointing
scenario, the British developers needed to
pinpoint the actual cause of the slowdown.

Solution: NERC’s developers used Aprobe to
verify how well the X server was operating. Their
probes quickly revealed that the X server was
spending 90 per cent of its time in an inefficient
buffer allocate and de-allocate routine. Further
probes showed that the buffers maintained by
the vendor's X server were terribly fragmented.

OC Systems consultants wrote probes to replace
the vendor’s faulty buffer routine with a much
cleaner one. CPU usage went down dramatically:
the problem was fixed. NERC supplied the X-
server vendor with indisputable evidence of the
problem and the code to fix it. The vendor was
able to repair the problem and incorporate the fix
into their next build.

Remarks: NERC’s developers left the probes
in their system to fix the problem until they
installed the new X server. Aprobe helped them
move beyond finger pointing to identifying and
resolving the actual problem. Without access to
source code, they were able to track down and
fix a serious issue in a piece of commercial off-
the-shelf software. �

An Overview of Aprobe Technology

© 2004 OC Systems Inc. All rights reserved. 5 www.ocsystems.com

How Aprobe works
To use Aprobe, you must install it on the machine that is running the application that needs
instrumentation.

Aprobe intercepts the application after it is loaded into memory, but before it starts. It then
inserts calls to your probes into the application’s image in memory. The calls are inserted at
locations that you specify.

Aprobe never modifies the application’s source files, executable files, or byte code files.

Writing your probes in C or Java
You can write your probes either in ANSI C (augmented by Aprobe directives) or in Java. In
both cases, you can use the entire language: probes can open windows, read and write from
sockets, call functions in the application directly, change the contents of buffers, get and set
properties, trigger exceptions or error conditions, gather timing statistics, start threads and
processes, and so forth.

An Overview of Aprobe Technology

© 2004 OC Systems Inc. All rights reserved. 6 www.ocsystems.com

Two sample probes
Below are two sample probes written in C:

 The application-specific probe thread counts the number of times that a function is
called.

 The application-specific probe main logs the count for later processing.

The application (not shown) is a Fibonacci number generator.1

probe thread
{
 int NumFibCalls = 0;

 probe "fib"
 {
 on_entry
 {
 NumFibCalls++;
 }
 }

 probe "main"
 {
 on_exit
 {
 log("For NumIterations = ", $NumIterations);
 log("the number of calls to fib = ",
 NumFibCalls);
 }
 }
}

Note: $NumIterations refers to the variable NumIterations in the Fibonacci
application. Aprobe can reference application data using the identifier that was used in the
original application source code.

Probes can do anything
Because probes are written in C or Java, you can write probes to do anything that these
languages can do, including calling functions in your own application, calling functions in
third-party applications or shared applications—even examining and modifying the
computer’s registers.

This means you can examine or change the contents of buffers, get and set properties, trigger
exceptions or error conditions, gather timing statistics, start threads and processes, and so
forth.

Probes are normally small, but nothing stops you from making them large enough to add
completely new functionality.

1 The Fibonacci numbers are a series of numbers starting with 1, 1; all subsequent numbers in the series
are generated by adding the two previous numbers. The first seven numbers are 1, 1, 2, 3, 5, 8, and 13.
Writing a Fibonacci number generator is a programming problem familiar to generations of computer
science students.

C A S E S T U D Y

Improving performance
Project: A multi-year, multi-billion-dollar project
designed to create a Web-enabled system to
process goods being imported into the USA. This
project is a complex undertaking with a burn rate
of more than $1 million a day.

Problem: Halfway through the schedule, bad
news. The system could not handle the high
throughput required. The development team had
to do the impossible: improve performance at the
same time as they coded the next release.

Solution: The project's prime contractor
turned to OC Systems for help. OCS consultants
took full responsibility for solving the perfor-
mance problem. Using Aprobe-based perfor-
mance tools, we integrated our performance
testing with the development project’s daily
regression testing, so no special performance
testbed was needed: we were even able to use
the project’s change request process.

Aprobe allowed us to be extremely specific in our
change requests; we even prototyped our
recommended changes, then used Aprobe to try
them out. Our change requests were imple-
mented as a matter of course during ongoing
development. The system became faster and
faster day by day, and the performance problem
slowly disappeared.

Remarks: The flexibility of the Aprobe tech-
nology was key, since the development code
was a complicated system that also included a
lot of debugging code (which was to be removed
in the final system).

In order to collect accurate performance data, we
had to turn off this sluggish debugging code. We
used Aprobe to turn off the debugging code as
well as to gather performance data. This allowed
the system to go from debug mode to production
mode with the flip of a software switch.

Because no separate performance testbed was
required, the project saved $3 million. Even
though we were running performance tests on
the development system, this had no real impact
on development efforts. All performance tests ran
on the most recent build, so developers could
work concurrently on improving performance and
implementing new modules. No changes were
needed to the existing test suite. Nor did any
testers need to be retrained. The project is now
on track to meet performance and delivery
schedules. �

An Overview of Aprobe Technology

© 2004 OC Systems Inc. All rights reserved. 7 www.ocsystems.com

Compiling and linking probes
The C code for a probe contains several non-ANSI directives, such as:

 probe, on_entry, on_exit, on_line and on_offset, which specify where in
the application the probe will be inserted.

 log, which logs data to buffers and/or log files.

 $return, $myParm1, $myParm2, $$EAX, and others which refer to return values,
positional parameters, registers, and so forth. (The prepended “$” is followed by the
identifier for functions, variables, and parameters in the target application.)

These directives are processed by apc, the Aprobe preprocessor for C. apc automatically
generates pure ANSI C functions, and translates the directives to calls to the Aprobe API from
your probes.

Your probes (now in the form of ANSI C functions) are then compiled by a standard C
compiler, linked, and stored in a library called the User Action Library (UAL file).

The UAL file is implemented as a DLL on Windows and as a shared library on Unix/Linux.

In effect, the one or more probes (patches) that you write in C are translated into a shared
library. That shared library contains not only the probes, but code that specifies where in the
application to insert each probe.

C A S E S T U D Y

Performing remote debugging at
user sites
Project: A major contractor created a widely-
distributed DoD (US Department of Defense)
system designed to assess military readiness for
a variety of emergency situations.

Problem: To remain effective, this system
needed close to 100 percent uptime. But the
budget wouldn’t cover flying senior support
engineers to multiple sites to track down every
bug that appeared during operational test.

Solution: The contractor was already using
Aprobe technology to find bugs in its integration
testing lab. They soon realized its power could
be extended to remote debugging.

Probes were defined by the contractor in the
contractor’s test lab, then sent by email or ftp to
user sites. A technician at each site loaded the
probes into the Aprobe directory and re-started
the system. As the application ran, trace data
was logged. The trace captured code-level,
system-level and hardware/software
configuration details, minimizing the data each
site had to supply manually.

At any point, the trace data could be emailed
back to support staff, who would step through the
trace. This helped them zero in on bugs quickly.

They would also use Aprobe to create a
temporary patch to test a fix. When the fix
worked, it could be left in place until the next
build was ready.

Remarks: OCS was able to debug the
problem in the customer’s environment without
burdening the customer. Doing remote
debugging avoided the high cost and delays of
sending senior support staff to do on-site
troubleshooting. The probes had virtually no
impact on system performance. These
application-specific probes will be used
throughout the life of the military system to
ensure rapid time-to-resolution of any issues.

An Overview of Aprobe Technology

© 2004 OC Systems Inc. All rights reserved. 8 www.ocsystems.com

For example, in the Fibonacci probes listed earlier in this document:

probe "fib" // Insert the probe into function fib...
{
 on_entry // ...at the first instruction.
 {
 NumFibCalls++; // This is the actual probe to be inserted.
 }
}

Starting your application with Aprobe
Aprobe intercepts your application after it has been loaded into memory and before it starts
executing. Under Windows, we use a device driver to implement this. Under Unix/Linux, we
use features in the loader to get control each time a new process is created.

Or you can execute the aprobe command directly from the command line:

aprobe -u your_UAL_file.dll your_application

The above aprobe command will:

 Load your application into memory.

 Insert (into the memory-resident application) calls to the probes stored in your UAL file.

Then aprobe “goes away” and your application runs normally—except that it executes calls
to the probes.

The aprobe command syntax allows you to specify parameters for your application,
parameters for your UAL file, the number and size of Aprobe’s log files, and so forth.

Inserting probes into your application
The apc command translates each C-based probe into an ANSI C function. For example, in
the Fibonacci probe earlier in this document, apc generates a C function that implements the
body of the probe for function fib, compiles it with your C compiler, and stores the resulting
machine-language function in a User Action Library (that is, in a DLL or shared library).

probe "fib" // This directive and
{
 on_entry // ...this directive specify where to insert CALL.
 {
 NumFibCalls++; // Body of probe is converted to ANSI C function.
 // C function is compiled into a machine-code
 // function that is the target of the CALL.
 }
}

When your application is loaded into memory, but before it executes, Aprobe inserts the
machine-language equivalent of CALL statements into the locations specified by the probes
that you wrote.

Each machine-language CALL executes the body of the probe by calling the machine-
language function that was previously compiled-and-linked from the probe’s source code.

C A S E S T U D Y

Monitoring enterprise systems in
real-time
Project: The Universal Agent created by OC
Systems in partnership with Computer
Associates (CA) uses Aprobe technology to
integrate applications with Unicenter NSM
(Network and Systems Management).

Problem: CA's Unicenter NSM monitors
mission-critical enterprise systems and displays
the information it collects in a central console. CA
built “agents” to monitor a dozen of the largest
enterprise applications, including PeopleSoft and
Oracle Applications. Organizations that wanted
to monitor any other applications had to build
their own agents using CA’s Unicenter SDK,
acquiring source code and making changes to
the third-party application.

Solution: OC Systems developed the
Universal Agent, an easy-to-use alternative that
eliminates the need to learn and use the
Unicenter SDK. The NSM-side code for the
agent is already written. The application side of
the agent is created with a small set of API
routines. Instead of taking months to create an
agent, a developer can now build a prototype in
an hour or two, and complete the full integration
in about a week.

Remarks: The Universal Agent can integrate
any enterprise application with Unicenter NSM,
without making any changes to the application or
even requiring access to source code. The cost
of integrating an application with Unicenter is
now a fraction of what it once was. CA awarded
the Universal Agent its ca smart Partner
Certification, giving it the company’s stamp of
approval.

An Overview of Aprobe Technology

© 2004 OC Systems Inc. All rights reserved. 9 www.ocsystems.com

What happens to the instruction that we replaced with the CALL instruction? It becomes the
last (or almost the last) instruction at the end of the C function.

Because Aprobe uses function calls, the size of your application does not increase.

Working with Java applications
If your application is written in Java, then so are your probes. The process of writing and
deploying Java probes is essentially the same as with C probes. The most important
differences are:

 You create Java probes by extending a class supplied with Aprobe.

 You must write XML-based deployment descriptors that specify the methods to be
probed. Here is an example:

<probe_deployment>
 <probe class="YourProbe"> // name of the probe.
 <target value="YourClass::yourMethod()"> // name of the method
 // to be probed.
 </probe>
</probe_deployment>

Reporting the logged data
Probes usually report results by logging data. Aprobe provides the log directive to support
logging. For example:

log("For NumIterations = ", $NumIterations);
log("the number of calls to fib = ", NumFibCalls);

Aprobe uses sophisticated logging mechanisms that provide very fast logging:

 All logging is done at full memory speed: Aprobe memory-maps the log files.

 You can configure the maximum size and number of log files.

 You can configure whether the log files will wrap.2

 We use a fast algorithm to prevent multiple threads from simultaneously accessing the
logging code.3

 Logged data is stored in a proprietary binary format for performance reasons. You can
use the apformat command to convert the binary data to ASCII. If necessary, you can
then also use grep, perl, or third-party reporting software to further manipulate the logged
data.

2 If wrapping is enabled, logging can continue even after the maximum size of the log file is reached: the
newest logged data replaces the oldest logged data in the log file.
3 All of Aprobe is “thread-safe”. That means that Aprobe’s logging code (and all other parts of Aprobe)
cannot be executed simultaneously by multiple threads. But we do not use thread locks (blocking
algorithms) to protect data. Instead, we have carefully designed all of our stacks, queues, and other
abstract data types to use faster, non-blocking algorithms (implemented using the CompareAndSwap
machine instruction).

C A S E S T U D Y

Injecting faults to achieve
comprehensive testing
Project: To achieve an extremely high level of
software quality, the US Federal Aviation Admin-
istration (FAA) requires the testing of thousands
of modules created by different development
teams.

Problem: To fully test an application, you must
test it under all possible conditions, including
error conditions. But how do you simulate errors
like a disk offline or a disk broken? The typical
approach is to modify the source code temp-
orarily before testing. However, this is so labor-
intensive it is most often only done once. For this
project, the FAA wanted a higher level of quality
assurance, and asked the contractor to find a
way to test many different error conditions.

Solution: The contractor chose Aprobe
technology, since it can “spoof” a system to be-
lieve that any error you need to simulate has
already occurred. Sometimes this involved using
Aprobe to stub out the execution of specified
methods execution and to return an error code
instead. In other cases, the contractor used
Aprobe to throw an exception. No application
changes were necessary for these error tests.
The fault injection process was so straight-
forward that it became part of the unit testing
process. The integration test team then added it
to the regression testing process so that the
errors were tested with every build.

Remarks: Aprobe allowed the contractor to
achieve comprehensive error testing. The quality
of the final code was demonstrably improved.

An Overview of Aprobe Technology

© 2004 OC Systems Inc. All rights reserved. 10 www.ocsystems.com

Calling the Aprobe API directly
As explained earlier, the apc command translates Aprobe directives into calls to the Aprobe
API. You probably won’t need to call the Aprobe API directly. But if you do, the API is fully
documented (and available at www.ocsystems.com).

The API allows you to manipulate module IDs, manipulate function line numbers and code
offsets, manage threads and processes, insert probes, manage the logs, manage the UAL files,
and so forth.

There are separate APIs for Java and for C.

How to find out more
To learn more about Aprobe, go to www.ocsystems.com, where you will find white papers,
downloadable demos, and full documentation for Aprobe. You can also arrange a
personalized online demo over the Internet.

Or you can contact me, Oliver Cole, directly at +1 (703) 359-8160, or oec@ocsystems.com.

About OC Systems
OC Systems provides software tools, development environments, and services that help
organizations maximize software quality and application availability for critical applications.

Founded in 1983, OC Systems originally developed compilers and other custom solutions for
its clients.

In the mid-1990s, OC Systems evolved into a products company, first offering an integrated
Ada development environment called PowerAda. Then it introduced Aprobe, a powerful
development and testing tool.

In 2001, the company launched RootCause, an application internals management tool based
on Aprobe technology.

Clients include Cognos, IBM, Intel, Lockheed Martin, SAIC, Sandia National Laboratories,
Sun Microsystems, the US Army, TRW, Unisys, UUNET and Veridian Engineering.

z z z

