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About This Paper
This is the first white paper from the Hyperledger Performance and Scale Working 
Group (https://wiki.hyperledger.org/groups/pswg/performance-and-scale-wg).  
The purpose of this document is to define the basic terms and key metrics 
that should be used to evaluate the performance of a blockchain and then 
communicate the results. This paper also serves as a platform-agnostic resource 
for technical blockchain developers and managers interested in using industry-
standard nomenclature.

While we appreciate that there may be discrete definitions for the terms “blockchain” 
and “Distributed Ledger Technology (DLT),” for the purposes of this paper we will 
treat both terms synonymously and use the term “blockchain” throughout.

This document provides some guidance on selecting and evaluating workloads. 
We expect that refinements to these definitions and new blockchain-specific 
metrics will warrant future revisions of this document.

In future documents, the Working Group plans to discuss workloads in greater 
detail and to offer additional guidance on standard procedures and emerging 
best practices for evaluating blockchain performance. To provide your feedback 
and stay informed about subsequent versions of this paper, please join us in the 
Performance and Scale Working Group (https://wiki.hyperledger.org/groups/
pswg/performance-and-scale-wg).
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Introduction
While blockchains may appear similar to distributed databases, they are typically 
implemented without a central authority and central repository. Therefore blockchains 
provide some unique differences from everything that has come before. A blockchain 
survives faults and attacks by using redundant checking at multiple nodes. This resiliency 
goes far beyond replication, since it happens across the network without any central 
coordinator or intermediary.

In some other networked systems like web tiers, adding nodes serves to divide work 
among more resources and increase performance. This is often the reverse in blockchains, 
where more nodes increase the resilience of the system in terms of integrity and availability, 
generally at some expense to performance.

In Bitcoin, for example, the best-case scenario would be that the network would lose no 
performance as nodes are added.

Even this simple notion can be complicated when we look across the breadth of blockchains. 
Some blockchains specialize the roles of nodes. In those systems a “node” may no longer 
imply a unique participant (such as a company) with a share of the resiliency burden.

This makes measuring and comparing performance between different blockchains very 
difficult. To help precisely and consistently evaluate the unique performance attributes 
of blockchains, this paper defines many relevant terms and metrics, and discusses some 
complex issues.

When publishing the results of any blockchain evaluation, we strongly recommend that all reports 
include full details and qualifiers of all the terms, metrics, and issues outlined in this paper.

Performance evaluation vs. benchmarks

Performance evaluation is the process of measuring the performance of a system under 
test. This evaluation can cover system-wide measures such as response time or latency, or 
measure-specific activities such as the time to write a block to persistent storage.

The goal of any performance evaluation is to understand and document the performance of 
the system or subsystem being tested. This often involves measuring what happens when 
dependent variables are altered; for example, measuring the throughput of the system as the 
number of concurrent requests is varied.

Benchmarking is the process of making standard measurements to compare one system to 
another or to previous measurements of the same system.

The term benchmark originally referred to marks on workbenches used to measure standard 
lengths of materials, or notches cut into buildings used by surveyors to measure heights.

Performance benchmarks are a specific type of performance evaluation often formalized by 
standards bodies such as Standard Performance Evaluation Corporation (SPEC), Securities 
Technology Analysis Center (STAC), and Transaction Processing Performance Council (TPC). 
These organizations carefully define workloads used to drive the system under test and 
specific performance measurements required to be made during the test.

Informal benchmarks may be used to look for any effects on performance as changes 
are made to a system’s code or design. For example, you can measure the performance 
of version 3.4 of a system, and then use that measurement as a benchmark to see if 
performance is better or worse in version 3.5.

In general, benchmarking is more controlled than performance evaluation, since benchmarks 
tend to run in a more standardized environment with a well-documented workload. Without 
benchmarks, comparisons between widely disparate environments are not very meaningful.
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This paper will focus on blockchain performance evaluation and the associated metrics, 
rather than on benchmarking. This is a necessary first step before the industry can develop 
any formal benchmarks. We expect that this Working Group will begin to define benchmarks 
for measuring blockchain performance at some point in the future.
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1. Performance Evaluation Terms
Figure 1 shows a typical configuration for a blockchain performance evaluation. The Test 
Harness on the left shows the program and system(s) used to generate load against the 
System Under Test (SUT) on the right. Each of the terms in Figure 1 is defined in this section.

Test Harness

The test harness is the hardware and software used to run the performance evaluation. 
This test harness will typically represent many clients that can inject workloads and make 
observations at any number of nodes.

Client

A client is an entity that can introduce work into a system or invoke system behaviors. In a 
blockchain system, there are often multiple types of clients at multiple levels.

For example, in a supply chain application using smart contracts deployed to a blockchain, 
the supply chain application is a client of the blockchain platform. However, further clients 
of the supply chain application will often interact with the application via a browser. Another 
client might be the user of an auditing component of the supply chain application who is 
notified of policy violations via an email or SMS message.

For the purposes of this paper, we will focus on the entities that directly interact with the 
blockchain platform, not on any applications built on top of those platforms.

A load-generating client is a node that submits transactions on behalf of the user to the 
blockchain network (SUT), most often following an automated test script. The interface 
between the client and the SUT can range from a simple Representational State Transfer 

Test Harness System Under Test (SUT)

Load-
Generating

Client

Node Node

Node Node

Node

Observing
Client

FIGURE 1: TYPICAL CONFIGURATION FOR A BLOCKCHAIN PERFORMANCE EVALUATION
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(REST) interface to a comprehensive Software Development Kit (SDK). Depending on the 
interface, a client can be either stateless or stateful.

An observing client is a node that receive notifications from the SUT or can query the SUT 
regarding the status of the submitted transactions, most often following an automated test 
script. There can be more than one observing client. The observing client cannot submit any 
new transactions.

System Under Test (SUT)

Defining the System Under Test (SUT) is a complex issue. For the purposes of this document, 
the SUT is defined as the hardware, software, networks, and specific configurations of each 
required to run and maintain the blockchain.

The SUT does not include the client APIs, any associated libraries, or any external caches or 
databases being used to accelerate read times.

Node

In the context of a blockchain network, a node is an independent computing entity that 
communicates with other nodes in a network to work together collectively to complete 
transactions.

A node is a virtual entity, in the sense that it could be running on physical hardware, or as a 
VM or containerized environment. In the latter case, a node could share physical hardware 
with other nodes in the same network.

A set of nodes may be managed by the same organization. For example, think of a mining 
pool operated by one company where a group of machines run as individual nodes doing 
proof of work (PoW) on a network.

In most blockchain networks (Bitcoin, Ethereum, Hyperledger Burrow, Hyperledger Indy, 
Hyperledger Iroha, Hyperledger Sawtooth) each node plays a uniform class of roles in the 
network, such as generating blocks, propagating blocks, and so on. In these networks, nodes 
are usually referred to as peers. Such networks might require one or more nodes to take on 
a temporary role as a leader. This leadership role may be passed to other nodes in certain 
well-determined conditions.

However, in some blockchain networks (such as Hyperledger Fabric), nodes are assigned 
one or more possible roles, such as endorsing peers, ordering services, or validating peers.
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2. Blockchain Terms
Blockchain is a new technology, with nomenclature still taking shape and evolving every day. 
Although blockchains are a new form of distributed database, some database terms have 
slightly different meanings when used in a blockchain context. And many common software 
terms have new nuances when used to describe a blockchain. This section describes some 
of the most common terms used to discuss blockchain technology.

Consensus

In the context of blockchain, consensus is the distributed process by which a network 
of nodes provide a guaranteed unique order of transactions and validates the block of 
transactions.

For more details in the context of Hyperledger, please refer to the white paper on consensus, 
Volume I from the Hyperledger Architecture Working Group, available here:  
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_
Paper_1_Consensus.pdf.

Commit

In a traditional database, a commit refers to the point when a transaction is written to the 
database. A blockchain has the additional complication of defining when this happens 
across multiple nodes. Typically a block is considered the record of committed transactions, 
and those transactions are committed when the block has been circulated through the 
network and applied by all nodes. The rules for the agreement on that block are dictated by 
consensus, which may have unique rules for finality.

Finality

Finality means that once a transaction is committed, it cannot be reversed, i.e. the data 
cannot be rolled back to the previous state. Different blockchain systems may provide 
different types of finality. Typically, this is defined in the consensus protocol. Different types of 
consensus exist, such as voting-based consensus with immediate finality and lottery-based 
consensus with probabilistic finality.

For testing purposes, formal thresholds of finality probability should be set. See Appendix A 
for further specifics.

Network Size

Network size is the number of validating nodes participating in consensus in the SUT. 
Network size is meant to express the total number of nodes actively participating in the 
blockchain network that support the unique features of a blockchain.

This count should not include observer nodes, or other nodes not actively participating in 
both consensus and the validation of transactions.

In systems that separate consensus and validation logic into different nodes, the network size 
should be expressed as the smaller node count of the two. This is because the resilience of 
the system (the key aspect of blockchains) is limited by the lesser number.

For example, a system deployed with a single consensus node but many other types of 
nodes has a single point of failure. By our definition, such a network has a size of one.

Query

Querying is the ability to run ad-hoc operations or searches against the dataset contained 
within the blockchain. The SUT may not be built to execute these queries in a performant way.
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Any off-chain databases, or caches that support efficient querying, can still be measured. 
But we assume that those are not standard parts of the blockchain. Therefore, query 
performance is beyond the scope of this version of this document.

Reads

Read operations differ from transactions in that there is no change to state. Reads can 
be an internal mechanism of a blockchain node, such as fetching data in the process of 
validating transactions. For the purposes of this document, we are only interested in defining 
measurements for external reads on the system, such as retrieving a transaction or querying 
a balance. Any internal reads will be an implicit part of the transactional measurements in any 
particular workload.

Many deployments use a system or tier beside a blockchain node to support more complex 
queries or to provide caching that improves read throughput. For the purposes of this document, 
we are only interested in the primitive fetching provided by the blockchain node itself.

Definitions of workloads should consider whether and to what degree “pure” read operations 
are intermingled with transactions. And all performance evaluation reports should disclose 
any external databases and how these are configured.

State and Global State

You can think of most blockchain systems as state machines, where each transaction or 
block of transactions is a state transition. The state itself is the contents of the database 
at a point in time. The log of transactions (the blockchain data structure) is not generally 
considered part of state, but simply the definitions of the transitions between states.

Global state is a state that is shared across all nodes. Note that not all blockchain systems 
implement global state. Some systems restrict information agreement for privacy or other reasons.

Transaction

A transaction is a state transition that changes data in the blockchain from one value to 
another. That data could represent an asset amount, several IoT sensor readings, or any other 
type of data tracked using a blockchain.

Transactions are typically proposed by clients and then evaluated by the blockchain system 
against a list of rules, sometimes called a smart contract. If valid, the system will commit the 
transaction, which makes the state change.

A transaction may fail the verification for one of the reasons listed in Appendix B. Some 
blockchain systems also record those invalid transactions in blocks, but most do not. When 
evaluating the performance of a blockchain, the measure of valid transactions is more 
meaningful. For this reason, the total number of invalid transactions should be subtracted 
when calculating throughput.
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3. Definitions of Key Metrics
This section defines several common metrics that apply to blockchains, along with a 
mathematical formula where appropriate. See Appendix A for further discussion of latency in 
the blockchain context. And see Appendix C for any experimental metrics that are interesting 
but not yet mature enough to be included in the main body of this document.

Read Latency

Read Latency = Time when response received – submit time

Read latency is the time between when the read request is submitted and when the reply is 
received.

Read Throughput

Read Throughput = Total read operations / total time in seconds

Read throughput is a measure of how many read operations are completed in a defined time 
period, expressed as reads per second (RPS). This metric may be informative, but it is not 
the primary measure of blockchain performance. In fact, systems will typically be deployed 
adjacent to the blockchain to facilitate significant reading and queries.

Transaction Latency

Transaction Latency = (Confirmation time @ network threshold) – submit time

Transaction Latency is a network-wide view of the amount of time taken for a transaction’s 
effect to be usable across the network. The measurement includes the time from the point 
that it is submitted to the point that the result is widely available in the network. This includes 
the propagation time and any settling time due to the consensus mechanism in place.

To account for both of those factors and give the network-wide view, the delay should be 
measured using all nodes in the SUT. Eyal et al provide a helpful definition for the amount of 
time for a percentage of the network to commit the transaction1, which we have simplified 
somewhat here. The latter part of this definition, the percentage of the network, is most 
significant for consensus protocols like PoW. In such systems a threshold like 90% may 
be desired, whereas in a non-probabilistic protocol like PBFT 100% is the only meaningful 
threshold.

This metric is computed per transaction, but in most cases reports should provide various 
statistics over all transactions like the average, high, low, and standard deviations.

Transaction Throughput

Transaction Throughput = Total committed transactions / total time in seconds  
@ #committed nodes

Transaction throughput is the rate at which valid transactions are committed by the 
blockchain SUT in a defined time period. Note that this is not the rate at a single node, but 
across the entire SUT, i.e. committed at all nodes of the network. This rate is expressed as 
transactions per second (TPS) at a network size.

Remember that the total number of invalid transactions should be subtracted from the total 
transactions to yield the total committed transactions. See Appendix A for further discussion 
of how to calculate different examples of latency.
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4. Considerations for Blockchain Performance Evaluation
This section discusses several key considerations when designing any blockchain 
performance evaluation, including the test environment, observation points, transaction 
characteristics, workloads, and faultloads. To create a valid and reproducible design, 
developers must weigh these considerations carefully, record their decisions clearly, and 
report their results fully.

These characteristics should be noted as part of the test results, since revealing these details 
makes it easier to compare performance tests across platforms.

Test Environment

Test results should be independently reproducible. To support this goal, all environment 
parameters and test software, including any workload, should be documented and made 
available.

Here are some added considerations when assessing the environment in which performance 
testing will occur:

• Consensus protocol. Describe the consensus protocol used during the testing, such 
as RAFT, Practical Byzantine Fault Tolerant (PBFT), and so on.

• Geographic distribution of nodes. Describe the physical setup of the network. Are all 
nodes co-located or geographically dispersed? If dispersed, then describe how and 
where.

• Hardware environment of all peers. Indicate the processor speed, number of cores, 
memory, and so on.

• Network model. Any information about the complexity of the network employed 
between peers might reveal potential bottlenecks that could be highlighted. For 
example, understanding the number and type of firewalls to be traversed. Any sort of 
complex network components should be called out.

• Number of nodes involved in the test transaction. Some blockchain platforms 
broadcast transactions to all nodes, while others restrict the interaction to a subset of 
the nodes (e.g. Hyperledger Fabric Endorsers).

• Software component dependencies. Does the test or platform require any additional 
components for the platform or the test itself to function? All components should be 
described.

• Test tools and framework. Describe which tools were used, and what testing 
framework devised to generate load and capture results. Describe how the test load 
was driven, and the location of the client load driver relative to the platform node.

• Type of data store used. The data store affects performance, especially if both reads 
and writes are included. Different platforms offer pluggable choices for the underlying 
ledger data store, such as CouchDB, H2, Postgres, and the major vendor databases.

• Workload, the code used to produce and validate the transaction. See the subsection 
below for a further discussion of workloads.

These characteristics should be noted as part of the test results, since revealing these details 
makes it easier to compare performance tests across platforms.

Observation Points

Wherever possible, measurements should be taken from the perspective of the test harness 
which is ideally located outside of the SUT. This will be closer to the viewpoint of the end 
user. When this cannot be achieved, the measurement point should be clearly identified.
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Consider spreading the workload entry points. Realistically, transactions represent 
heterogeneous interactions among diverse sets of nodes. Thus, an aspect of assessing 
scalability would be to observe how a platform improves or degrades when the workload 
injection is spread across different nodes, rather than from a single node entry point.

Transaction Characteristics

• Complexity: How compute-intensive is the logic of the smart contract?

• Data access patterns: Do the patterns of reads and writes model the production use?

• Dependencies: Do the transactions model the transaction and data dependencies of 
your production use?

• Size: How large are the transactions? This has implications for the propagation times 
across the network.

Workloads

A workload defines how the SUT is exercised. In any performance testing it is critical that 
the workload is representative of the actual production usage. For example, if a workload 
simply creates new entries in the database, but the production usage predominantly modifies 
existing entries, then the workload will not tell us anything about how to expect the system to 
behave in production.

There are multiple ways to design a workload. Two examples are replaying production 
transactions and making use of pre-existing database benchmarks and applying them to a 
blockchain environment.

We expect multiple workloads to exist that help evaluate different types of usages. Each 
of those workloads should be informed by and representative of some production usage. 
Defining any specific workload is outside the scope of this document.

Faultloads

All blockchains should be designed to provide ledger immutability, cryptographic authenticity, 
and tolerance against faults and attacks as core properties. Such features are enabled in the 
system by allocating extra resources. When such features are enabled or faults are present, 
the system’s peak performance diminishes.

Since many blockchain networks are expected to operate in an environment where faults 
and attacks are ordinary events, the performance benchmarks should include faulty and 
even malicious transactions. Faultload represents a set of faults and stressful conditions that 
emulates real faults experienced in the field.2

Performance benchmarking activity should be conducted in an environment similar to the 
one in which the networks will operate. Even within the permissioned blockchain networks, 
the environment could vary ranging from closed small-scale networks to highly-distributed 
internet-deployed networks.
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Appendix A: Latency Calculation Examples
This appendix describes three different cases that create different issues for measuring 
latency in blockchains. One case has immediate finality, and two have probabilistic finality 
with known and unknown topologies. Numbers are used for illustration purposes only and do 
not reflect the performance of any particular platform.

Case 1: SUT with Immediate Finality

Systems employing voting-based consensus have immediate finality. Once a transaction is 
committed, the state is guaranteed to be irrevocable. As with the remaining cases, the test 
process should measure commitment at each node to ensure full commitment across the 
distributed system.

Example: In a 10-node network running Min-BFT, 9 nodes commit a transaction after 11 
seconds. The tenth node has a higher latency connection to the leader and takes an 
additional second. This transaction has an 12-second delay at 100% of the nodes.

Clients

Pre-prepare

Leader prepares block Transaction
committed at 75% peers

Transaction
committed at all peers

* => Leader

Prepare Commit Block execution & commit

Peer 0

Peer 1

Peer 2

Peer 3

FIGURE 2: TRANSACTION FLOW FOR BLOCKCHAIN PLATFORMS USING PBFT CONSENSUS.  

SOURCE: https://github.com/tallharish/PerfMetricsPSWG/
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Case 2: SUT with Probabilistic Finality and Known Topology

Systems using lottery-based consensus have probabilistic finality. In controlled performance 
testing, the topology will be known. This will likely be the case in most permissioned deployments. 
In this case, a transaction is confirmed only when multiple nodes reach the same state.

Figure 3 depicts transaction flow for platforms using random leader election consensus like 
PoW or proof of elapsed time (PoET). This form of consensus does not have discrete rounds 
like PBFT. However, the phases depicted in the diagram represent conceptual operations:

• Request—A client submits a transaction to the network.

• Commit—One validator publishes the transaction in a block to the network.

• Fork—Zero or more validators inadvertently publish competing blocks.

• Resolve—Upon receipt of the winning block, other validators resolve the fork.

• Consistency—Subsequent reads to any validator produce consistent results.

Since the eventual consistency of the network is probabilistic, this gives rise to using a 
percentage of the network as a threshold for measuring latency.

Example: In a 20-node network, running PoET, 19 nodes commit a transaction within 25 
seconds after the client submitted it. The final node publishes a competing block which it rolls 
back during fork resolution, causing an additional 10-second delay. Table 1 lists the commit 
times at all 20 nodes.

As shown in Table 2, this transaction has a 25-second delay at a 95% threshold of nodes and 
a 35-second delay at a 100% of the nodes.

A company may require a 100% threshold, in which case the latency should be reported as 
35 seconds at 100% of nodes.

Request

Clients

Peer 0

Peer 1

Peer 2

Peer 3

All peers
preparing block => block execution & commit

Commit Fork Resolve Consistency

Figure 3: TRANSACTION FLOW FOR BLOCKCHAIN PLATFORMS USING RANDOM LEADER ELECTION CONSENSUS.  

SOURCE: https://github.com/tallharish/PerfMetricsPSWG/
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Case 3: SUT with Probabilistic Finality and Unknown Topology

Such a system is usually designed to run in an untrusted environment with anonymous 
“miners.” Only limited access points are revealed to the client. In this case, the confirmation 
should be delayed until enough blocks are chained behind the block/transaction.

For example, in Bitcoin, a delay of six blocks is usually considered sufficient to confirm the 
transaction. A performance test tool can estimate this by recording the block in which each 
transaction shows up. This data can be used to do a percentile analysis, so we can estimate 
the percentile of transactions committed up to a certain block, as shown in Figure 4 below. 
An organization can use this metric for risk assessment of their transactions.

Example: A transaction submitted when block x is the highest can be found in block (x + 2) 
with 50th percentile chance, in block (x+5) with 90th percentile chance, in block (x+7) with 
99th percentile chance. Thus the transaction latency is 2 blocks at 50th percentile, 5 blocks 
at 90th percentile, and 7 blocks at 99th percentile respectively. In case blocks are generated 
with variable frequency, this can also be visualized by time.

Note that this measurement would vary with the average block size (in kB or average number 
of transactions per block), block frequency, and network size.

FIGURE 4: TRANSACTION CONFIRMATION PROBABILITY. 

SOURCE: https://github.com/tallharish/PerfMetricsPSWG

Block Number
1

0.00 0.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7 8 0 20 40 60

Time (in Seconds)

C
u

m
u

la
ti

ve
 P

ro
b

a
b

ili
ty

C
u

m
u

la
ti

ve
 P

ro
b

a
b

ili
ty



15

Appendix B: Failed Transactions
There are several possible reasons why blockchain transactions can be rejected, including 
consensus errors, syntax errors, and version errors.3

Consensus errors

Validation logic (VSCC in the case of Hyperledger Fabric)

Policy failure (endorsement policy not satisfied in the case of Hyperledger Fabric)

Syntax errors

Invalid input (smart contract id, unmarshalling errors, and so on)

Unverifiable client or endorsement signature

Repeated transaction (due to error or replay attack)

Version errors

By version control (readset version mismatch, writeset is unwritable)

For the current version of this document, we consider throughput the same as goodput.

Since different blockchain platforms handle consensus and transaction validation differently, 
it is hard to align error classes across platforms. And assessing the reasons why any 
transaction is rejected requires a deeper analysis of sub-system metrics. While this could be 
interesting to the platform’s developers, this is outside the scope of this document.
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Appendix C: Experimental Metrics
This appendix defines any metrics which may offer interesting insights into blockchain 
performance, but have not yet reached a mature-enough definition to be included in the 
main body of this document.

The Performance and Scale Working Group would like feedback on whether and how these 
experimental metrics are being used in enterprise blockchains. We also hope this serves to 
seed some research interest in developing blockchain-specific metrics.

Blockchain Work

Blockchain Work = f(Transaction throughput, network size)

Blockchain Work is a function of the transaction throughput and the number of validating 
consensus nodes. This metric is intended to most completely express the amount of work 
accomplished by a blockchain network in a single figure.

Consider a blockchain with a single node: This may achieve high throughput, but no 
guarantee of availability or integrity. The blockchain work metric provides a meaningful 
characterization of blockchain performance, rather than simply database performance.

At publication time the Working Group had not identified an ideal function. One suggested 
function is below:

Product: Transaction Throughput * Log(Network Size)
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